A stochastic-Lagrangian particle system for the Navier–Stokes equations
نویسندگان
چکیده
منابع مشابه
A Stochastic-lagrangian Particle System for the Navier-stokes Equations
Abstract. This paper is based on a formulation of the Navier-Stokes equations developed in arxiv:math.PR/0511067 (to appear in Commun. Pure Appl. Math), where the velocity field of a viscous incompressible fluid is written as the expected value of a stochastic process. In this paper, we take N copies of the above process (each based on independent Wiener processes), and replace the expected val...
متن کاملModified augmented Lagrangian preconditioners for the incompressible NavierStokes equations
We study different variants of the augmented Lagrangian (AL)-based block-triangular preconditioner introduced by the first two authors in [SIAM J. Sci. Comput. 2006; 28: 2095–2113]. The preconditioners are used to accelerate the convergence of the Generalized Minimal Residual method (GMRES) applied to various finite element and Marker-and-Cell discretizations of the Oseen problem in two and thr...
متن کاملSemi-Lagrangian Particle Methods for Hyperbolic Equations
Particle methods with remeshing of particles at each time-step can be seen as forward semi-lagrangian conservative methods for advection-dominated problems, and must be analyzed as such. In this article we investigate the links between these methods and finite-difference methods and present convergence results as well as techniques to control their oscillations. We emphasize the role of the siz...
متن کاملSolving a system of 2D Burgers' equations using Semi-Lagrangian finite difference schemes
In this paper, we aim to generalize semi-Lagrangian finite difference schemes for a system of two-dimensional (2D) Burgers' equations. Our scheme is not limited by the Courant-Friedrichs-Lewy (CFL) condition and therefore we can apply larger step size for the time variable. Proposed schemes can be implemented in parallel very well and in fact, it is a local one-dimensional (LOD) scheme which o...
متن کاملA study on the global regularity for a model of the 3D axisymmetric NavierStokes equations
We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 2008
ISSN: 0951-7715,1361-6544
DOI: 10.1088/0951-7715/21/11/004