A stochastic interpretation of the Riemann zeta function.
نویسندگان
چکیده
منابع مشابه
A stochastic interpretation of the Riemann zeta function.
We give a stochastic process for which the terms of the Riemann zeta function occur as the probability distributions of the elementary random variables of the process.
متن کاملCybernetic Interpretation of the Riemann Zeta Function
This paper uses cybernetic approach to study behavior of the Riemann zeta function. It is based on the elementary cybernetic concepts like feedback, transfer functions, time delays, PI (Proportional–Integral) controllers or FOPDT (First Order Plus Dead Time) models, respectively. An unusual dynamic interpretation of the Riemann zeta function is obtained.
متن کاملA Riemann zeta stochastic process
and thus be represented (for σ > 1 ) as a product of terms of the form exp(a(eibt − 1)), each of which is the characteristic function of a Poisson random variable with intensity a and values in the lattice kb, k = 0, 1, 2, . . . . Cf. Gnedenko and Kolmogorov [6, p. 75]. Faced with a family of “zeta distributions” indexed by parameter σ > 1 , one is led to ask for joint distributions, i.e., for ...
متن کاملq-Riemann zeta function
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1993
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.90.2.697