A stochastic interpretation of the Riemann zeta function.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stochastic interpretation of the Riemann zeta function.

We give a stochastic process for which the terms of the Riemann zeta function occur as the probability distributions of the elementary random variables of the process.

متن کامل

Cybernetic Interpretation of the Riemann Zeta Function

This paper uses cybernetic approach to study behavior of the Riemann zeta function. It is based on the elementary cybernetic concepts like feedback, transfer functions, time delays, PI (Proportional–Integral) controllers or FOPDT (First Order Plus Dead Time) models, respectively. An unusual dynamic interpretation of the Riemann zeta function is obtained.

متن کامل

A Riemann zeta stochastic process

and thus be represented (for σ > 1 ) as a product of terms of the form exp(a(eibt − 1)), each of which is the characteristic function of a Poisson random variable with intensity a and values in the lattice kb, k = 0, 1, 2, . . . . Cf. Gnedenko and Kolmogorov [6, p. 75]. Faced with a family of “zeta distributions” indexed by parameter σ > 1 , one is led to ask for joint distributions, i.e., for ...

متن کامل

q-Riemann zeta function

We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1993

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.90.2.697