A spectral sequence associated with a symplectic manifold
نویسندگان
چکیده
منابع مشابه
GROUPOID ASSOCIATED TO A SMOOTH MANIFOLD
In this paper, we introduce the structure of a groupoid associated to a vector field on a smooth manifold. We show that in the case of the $1$-dimensional manifolds, our groupoid has a smooth structure such that makes it into a Lie groupoid. Using this approach, we associated to every vector field an equivalence relation on the Lie algebra of all vector fields on the smooth...
متن کاملThe space of associated metrics on a symplectic manifold
In this work the spaces of Riemannian metrics on a closed manifold M are studied. On the space M of all Riemannian metrics on M the various weak Riemannian structures are defined and the corresponding connections are studied. The space AM of associated metrics on a symplectic manifold M,ω is considered in more detail. A natural parametrization of the space AM is defined. It is shown, that AM is...
متن کاملWick quantisation of a symplectic manifold
The notion of the Wick star-product is covariantly introduced for a general symplectic manifold equipped with two transverse polarisations. Along the lines of Fedosov method, the explicit procedure is given to construct the Wick symbols on the manifold. The cohomological obstruction is identified to the equivalence between the Wick star-product and the Fedosov one. In particular in the Kähler c...
متن کاملSymmetry of a Symplectic Toric Manifold
The action of a torus group T on a symplectic toric manifold (M, ω) often extends to an effective action of a (nonabelian) compact Lie group G. We may think of T and G as compact Lie subgroups of the symplectomorphism group Symp(M, ω) of (M, ω). On the other hand, (M, ω) is determined by the associated moment polytope P by the result of Delzant [4]. Therefore, the group G should be estimated in...
متن کاملgroupoid associated to a smooth manifold
in this paper, we introduce the structure of a groupoid associated to a vector field on a smooth manifold. we show that in the case of the $1$-dimensional manifolds, our groupoid has a smooth structure such that makes it into a lie groupoid. using this approach, we associated to every vector field an equivalence relation on the lie algebra of all vector fields on the smooth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Doklady Mathematics
سال: 2007
ISSN: 1064-5624,1531-8362
DOI: 10.1134/s1064562407020287