A Spatiotemporal Agent for Robust Multimodal Registration
نویسندگان
چکیده
منابع مشابه
An Artificial Agent for Robust Image Registration
3-D image registration, which involves aligning two or more images, is a critical step in a variety of medical applications from diagnosis to therapy. Image registration is commonly performed by optimizing an image matching metric as a cost function. However, this task is challenging due to the nonconvex nature of the matching metric over the plausible registration parameter space and insuffici...
متن کاملIntensity-based robust similarity for multimodal image registration
This paper proposes a new intensity-based similarity metric that can be used for the registration of multimodal images. It combines the robust estimation with both the forward and inverse transformation to reduce the negative effects of outliers in the images. For this purpose, we firstly employ the multiresolution technique to downsample the original images, then resort to the simulated anneal...
متن کاملRobust Nonrigid Multimodal Image Registration Using Local Frequency Maps
Automatic multi-modal image registration is central to numerous tasks in medical imaging today and has a vast range of applications e.g., image guidance, atlas construction, etc. In this paper, we present a novel multi-modal 3D non-rigid registration algorithm where in 3D images to be registered are represented by their corresponding local frequency maps efficiently computed using the Riesz tra...
متن کاملRobust Multimodal Registration Using Local Phase-Coherence Representations
Automatic registration of multimodal images has proven to be a difficult task. Most existing techniques have difficulty dealing with situations involving highly non-homogeneous image contrast and a small initial overlapping region between the images. This paper presents a robust multi-resolution method for registering multimodal images using local phase-coherence representations. The proposed m...
متن کاملRobust Registration of Dissimilar Single and Multimodal Images
In this paper, we develop data driven registration algorithms, relying on robust pixel similarity metrics, that enable an accurate (subpixel) rigid registration of dissimilar single and multimodal 2D/3D images. A “soft redescending” estimator is associated to a top down stochatic multigrid relaxation algorithm in order to obtain robust, data driven multimodal image registrations. With the stoch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2989150