A space decomposition method for parabolic equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Space Decomposition Method for Parabolic Equations

A convergence proof is given for an abstract parabolic equation using general space decomposition techniques. The space decomposition technique may be a domain decomposition method, a multilevel method, or a multigrid method. It is shown that if the Euler or Crank-Nicolson scheme is used for the parabolic equation, then by suitably choosing the space decomposition, only O(jlog j) steps of itera...

متن کامل

An optimization-based domain decomposition method for parabolic equations

An optimization-based, non-overlapping domain decomposition method for the solution of the heat equation is presented. The crux of the method is a constrained minimization problem for which the objective functional measures the jump in the dependent variables across the common boundaries between subdomains. The existence of an optimal solution is proved as is convergence of optimal solutions. A...

متن کامل

Space-time Domain Decomposition for Parabolic Problems Space-time Domain Decomposition for Parabolic Problems

We analyze a space-time domain decomposition iteration, for a model advection diiusion equation in one and two dimensions. The asymptotic convergence rate is superlinear, and it is governed by the diiusion of the error across the overlap between subdomains. Hence, it depends on both the size of this overlap and the diiusion coeecient in the equation. However, it is independent of the number of ...

متن کامل

Compare Adomian Decomposition Method and Laplace Decomposition Method for Burger's-Huxley and Burger's-Fisher equations

In this paper, Adomian decomposition method (ADM) and Laplace decomposition method (LDM) used to obtain series solutions of Burgers-Huxley and Burgers-Fisher Equations. In ADM the algorithm is illustrated by studying an initial value problem and LDM is based on the application of Laplace transform to nonlinear partial differential equations. In ADM only few terms of the expansion are required t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Methods for Partial Differential Equations

سال: 1998

ISSN: 0749-159X,1098-2426

DOI: 10.1002/(sici)1098-2426(199801)14:1<27::aid-num2>3.3.co;2-m