A smoothing spline based test of model adequacy in polynomial regression
نویسندگان
چکیده
منابع مشابه
Smoothing Spline Semi-parametric Nonlinear Regression Models
We consider the problem of modeling the mean function in regression. Often there is enough knowledge to model some components of the mean function parametrically. But for other vague and/or nuisance components, it is often desirable to leave them unspecified and to be modeled nonparametrically. In this article, we propose a general class of smoothing spline semi-parametric nonlinear regression ...
متن کاملUse of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملconstruction and validation of a computerized adaptive translation test (a receptive based study)
آزمون انطباقی رایانه ای (cat) روشی نوین برای سنجش سطح علمی دانش آموزان می باشد. در حقیقت آزمون های رایانه ای با سرعت بالایی به سمت و سوی جایگزین عملی برای آزمون های کاغذی می روند (کینگزبری، هاوسر، 1993). مقاله حاضر به دنبال آزمون انطباقی رایانه ای برای ترجمه می باشد. بدین منظور دو پرسشنامه مشتمل بر 55 تست ترجمه میان 102 آزمودنی و 10 مدرس زبان انگلیسی پخش گردید. پرسشنامه اول میان 102 دانشجوی س...
Polynomial Spline Confidence Bands for Regression Curves
Asymptotically exact and conservative confidence bands are obtained for a nonparametric regression function, using piecewise constant and piecewise linear spline estimation, respectively. Compared to the pointwise confidence interval of Huang (2003), the confidence bands are inflated by a factor proportional to {log (n)}, with the same width order as the Nadaraya-Watson bands of Härdle (1989), ...
متن کاملLocal Asymptotics for Polynomial Spline Regression
In this paper we develop a general theory of local asymptotics for least squares estimates over polynomial spline spaces in a regression problem. The polynomial spline spaces we consider include univariate splines, tensor product splines, and bivariate or multivariate splines on triangulations. We establish asymptotic normality of the estimate and study the magnitude of the bias due to spline a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of the Institute of Statistical Mathematics
سال: 1989
ISSN: 0020-3157,1572-9052
DOI: 10.1007/bf00049403