A Smooth Variational Principle with Applications to Hamilton-Jacobi Equations in Infinite Dimensions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$(varphi_1, varphi_2)$-variational principle

In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm,  such that $f + g $ attains its strong minimum on $X. $ This result extends some of the  well-known varitional principles as that of Ekeland [On the variational principle,  J. Ma...

متن کامل

A Comparison Principle for Hamilton-jacobi Equations with Discontinuous Hamiltonians

We show a comparison principle for viscosity superand subsolutions to Hamilton-Jacobi equations with discontinuous Hamiltonians. The key point is that the Hamiltonian depends upon u and has a special structure. The supersolution must enjoy some additional regularity.

متن کامل

Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle

We propose a linear finite-element discretization of Dirichlet problems for static Hamilton–Jacobi equations on unstructured triangulations. The discretization is based on simplified localized Dirichlet problems that are solved by a local variational principle. It generalizes several approaches known in the literature and allows for a simple and transparent convergence theory. In this paper the...

متن کامل

Microscopic derivations of several Hamilton–Jacobi equations in infinite dimensions, and large deviation of stochastic systems

We consider Hamilton–Jacobi equations which characterize optimal controlled partial differential equations of the following types: the Allen–Cahn equation, the Cahn–Hilliard equation, a nonlinear Fokker–Planck equation, and aVlasov–Fokker–Planck equation. In each of the examples, the optimal control problem and its associated cost functional can be derived as limit from a microscopically define...

متن کامل

Infinite-Dimensional Hamilton-Jacobi-Bellman Equations in Gauss-Sobolev Spaces

We consider the strong solution of a semi linear HJB equation associated with a stochastic optimal control in a Hilbert space H. By strong solution we mean a solution in a L2(μ,H)-Sobolev space setting. Within this framework, the present problem can be treated in a similar fashion to that of a finite-dimensional case. Of independent interest, a related linear problem with unbounded coefficient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1993

ISSN: 0022-1236

DOI: 10.1006/jfan.1993.1009