A small, physiological electric field orients cell division
نویسندگان
چکیده
منابع مشابه
A small, physiological electric field orients cell division.
We report on an observation that the orientation of cell division is directed by small, applied electric fields (EFs). Cultured human corneal epithelial cells were exposed to a direct-current EF of physiological magnitude. Cells divided while attached to the culture dish, and most did so with a cleavage plane perpendicular to the EF vector. There are many instances in which cell divisions in vi...
متن کاملHGF, MAPK, and a small physiological electric field interact during corneal epithelial cell migration.
PURPOSE To investigate the effects of hepatocyte growth factor (HGF) and a small applied electric field (EF) on corneal epithelial cell (CEC) migration. METHODS Primary cultures of bovine CECs were exposed to an EF (25-250 mV/mm) in the presence or absence of HGF (100 ng/mL). The rate and directionality of CEC migration were quantified. The expression of HGF receptors (HGFRs), p42/44 mitogen-...
متن کاملPhysical association between a novel plasma-membrane structure and centrosome orients cell division
In the last mitotic division of the epidermal lineage in the ascidian embryo, the cells divide stereotypically along the anterior-posterior axis. During interphase, we found that a unique membrane structure invaginates from the posterior to the centre of the cell, in a microtubule-dependent manner. The invagination projects toward centrioles on the apical side of the nucleus and associates with...
متن کاملDirectional Sensing Orients Cell Migration and Polarization
Cell migration is a complex process that requires the coordinated regulation of the cytoskeleton and cell adhesion. Actin polymerization at the cell cortex generates filaments that produce pseudopods and other membrane extensions that provide forward drive (34). In unstimulated Dictyostelium cells, pseudopods are formed at random positions independently of receptors and G proteins (FIGURE 1). T...
متن کاملSmall GTPases as regulators of cell division
The superfamily of small GTPases serves as a signal transducer to regulate a diverse array of cellular functions. The members of this superfamily are structurally and functionally classified into at least 5 groups (Ras, Rho/Rac, Rab, Arf, and Ran) and they are involved in the control of cell proliferation and differentiation, regulation of the actin cytoskeleton, membrane trafficking, and nucle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1999
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.96.9.4942