A singular Moser-Trudinger inequality for mean value zero functions in dimension two

نویسندگان

چکیده

Let $\Omega\subset\mathbb{R}^2$ be a smooth bounded domain with $0\in\partial\Omega$. In this paper, we prove that for any $\beta\in(0,1)$, the supremum $$\sup_{u\in W^{1,2}(\Omega), \int_\Omega u dx=0, \int_\Omega|\nabla u|^2dx\leq1}\int_\Omega \frac{e^{2\pi(1-\beta) u^2}}{|x|^{2\beta}}dx$$ is finite and can attained. This partially generalizes well-known work of Alice Chang Paul Yang (J. Differential Geom. 27 (1988), no. 2, 259-296) who have obtained inequality when $\beta=0$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Moser-trudinger Inequality for the Singular Toda System

In this paper we prove a sharp version of the Moser-Trudinger inequality for the Euler-Lagrange functional of a singular Toda system, motivated by the study of models in Chern-Simons theory. Our result extends those in [14] and [37] for the scalar case, as well as that in [23] for the regular Toda system. We expect this inequality to be a basic tool to attack variationally the existence problem...

متن کامل

A Hardy–Moser–Trudinger inequality

In this paper we obtain an inequality on the unit disk B in R2, which improves the classical Moser-Trudinger inequality and the classical Hardy inequality at the same time. Namely, there exists a constant C0 > 0 such that ∫ B e 4πu2 H(u) dx ≤ C0 <∞, ∀ u ∈ C 0 (B), where H(u) := ∫

متن کامل

Sharp Form for Improved Moser-trudinger Inequality

S2 (|∇u| + 2u)}, and the equality holds if and only if eg is a metric of constant curvature. In the study of deforming metrics and prescribing curvatures on S, this inequality is often used to control the size and behavior of a new metric eg0 near a concentration point. With certain “balance” condition on the metric one would guess that if the metric concentrates, it should concentrate at more ...

متن کامل

On a Multi-particle Moser-trudinger Inequality

We verify a conjecture of Gillet-Soulé. We prove that the determinant of the Laplacian on a line bundle over CP is always bounded from above. This can also be viewed as a multi-particle generalization of the Moser-Trudinger Inequality. Furthermore, we conjecture that this functional achieves its maximum at the canonical metric. We give some evidence for this conjecture, as well as links to othe...

متن کامل

Sharp Constant and Extremal Function for the Improved Moser-trudinger Inequality Involving L Norm in Two Dimension

Let Ω ⊂ R 2 be a smooth bounded domain, and H 1 0 (Ω) be the standard Sobolev space. Define for any p > 1, λp(Ω) = inf u∈H 1 0 (Ω),u ≡0 ∇u 2 2 /u 2 p , where · p denotes L p norm. We derive in this paper a sharp form of the following improved Moser-Trudinger inequality involving the L p-norm using the method of blow-up analysis: sup u∈H 1 0 (Ω),∇u 2 =1 Ω e 4π(1+αu 2 p)u 2 dx < +∞ for 0 ≤ α < λp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China-mathematics

سال: 2021

ISSN: ['1674-7283', '1869-1862']

DOI: https://doi.org/10.1007/s11425-020-1875-3