A Sequential Importance Sampling Algorithm for Counting Linear Extensions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Linear Extensions of a Partial Order

A partially ordered set (P,<) is a set P together with an irreflexive, transitive relation. A linear extension of (P,<) is a relation (P,≺) such that (1) for all a, b ∈ P either a ≺ b or a = b or b ≺ a, and (2) if a < b then a ≺ b; in other words, a total order that preserves the original partial order. We define Λ(P ) as the set of all linear extensions of P , and define N(P ) = |Λ(P )|. Throu...

متن کامل

Sequential Importance Sampling for Multiway Tables

We describe an algorithm for the sequential sampling of entries in multiway contingency tables with given constraints. The algorithm can be used for computations in exact conditional inference. To justify the algorithm, a theory relates sampling values at each step to properties of the associated toric ideal using computational commutative algebra. In particular, the property of interval cell c...

متن کامل

Sequential Importance Sampling for Visual Tracking Reconsidered

We consider the task of filtering dynamical systems observed in noise by means of sequential importance sampling when the proposal is restricted to the innovation components of the state. It is argued that the unmodified sequential importance sampling/resampling (SIR) algorithm may yield high variance estimates of the posterior in this case, resulting in poor performance when e.g. in visual tra...

متن کامل

Counting Linear Extensions: Parameterizations by Treewidth

We consider the #P-complete problem of counting the number of linear extensions of a poset (#LE); a fundamental problem in order theory with applications in a variety of distinct areas. In particular, we study the complexity of #LE parameterized by the well-known decompositional parameter treewidth for two natural graphical representations of the input poset, i.e., the cover and the incomparabi...

متن کامل

Counting Linear Extensions of Sparse Posets

Counting the linear extensions of a partially ordered set (poset) is a fundamental problem with several applications. We present two exact algorithms that target sparse posets in particular. The first algorithm breaks the counting task into subproblems recursively. The second algorithm uses variable elimination via inclusion–exclusion and runs in polynomial time for posets with a cover graph of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Journal of Experimental Algorithmics

سال: 2020

ISSN: 1084-6654,1084-6654

DOI: 10.1145/3385650