A Scale-Up Strategy for a Commercial Scale Bubble Column Slurry Reactor for Fischer-Tropsch Synthesis
نویسندگان
چکیده
منابع مشابه
Commercial scale slurry bubble column reactor optimization
An in-depth numerical study has been carried out to investigate a high-pressure commercial scale (2–8 meter diameter) slurry bubble column reactor (SBCR). Typical superficial gas velocities are in the range of 0.5–3 m/s, and overall vapor hold-ups are in the range of 0.45–0.85. The study revealed that steady compartmental reaction models do not match plant data when reaction time constants are ...
متن کاملCFD modeling of slurry bubble column reactor for Fischer-Tropsch synthesis
Industrial bubble column reactor for Fischer-Tropsch (FT) synthesis includes complex hydrodynamic, chemical and thermal interaction of three material phases: population of bubbles of different sizes, liquid and catalyst particles suspended in liquid. To simulate FT bubble column, a Computational Fluid Dynamics model is described here. The model is based on Eulerian multifluid formulation and ac...
متن کاملModeling the Fischer-Tropsch Reaction In a Slurry Bubble Column Reactor
Fischer-Tropsch synthesis is one of the most important catalytic reactions that convert the synthetic gas to light and heavy hydrocarbons. One of the main issues is selecting the type of reactor. The slurry bubble reactor is suitable choice for FischerTropsch synthesis because of its good qualification to transfer heat and mass, high durability of catalyst, low cost maintenance and repair. The ...
متن کاملModeling of the Fischer–Tropsch synthesis in slurry bubble column reactors
A multicomponent one-dimensional dynamic mathematical model for the reacting slurry systems with a change in gas flow rate due to the chemical reaction is developed. A change in gas flow rate caused by the chemical reaction is modeled using the overall gas mass balance. Thus, all relevant chemical species are included in the model. Linear first-order reaction kinetics is considered. The gas pha...
متن کاملPilot scale study of Co-Fe-Ni nanocatalyst for CO hydrogenation in Fischer-Tropsch synthesis
In this work, a Co-Fe-Ni catalyst was prepared and the effect of a range of operational variables such as gas hourly space velocity (GHSV), calcination temperature, calcination time and agent on its catalytic performance for green-fuels production was investigated. By application of different characterization techniques such as XRD, BET, TGA/DSC, and SEM, it was found that these parameters have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Oil & Gas Science and Technology
سال: 2000
ISSN: 1294-4475
DOI: 10.2516/ogst:2000026