A Runge–Kutta discontinuous Galerkin scheme for hyperbolic conservation laws with discontinuous fluxes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Runge-Kutta discontinuous Galerkin scheme for hyperbolic conservation laws with discontinuous fluxes

The paper proposes a scheme by combining the Runge-Kutta discontinuous Galerkin method with a δ-mapping algorithm for solving hyperbolic conservation laws with discontinuous fluxes. This hybrid scheme is particularly applied to nonlinear elasticity in heterogeneous media and multi-class traffic flow with inhomogeneous road conditions. Numerical examples indicate the scheme’s efficiency in resol...

متن کامل

hp-Version discontinuous Galerkin methods for hyperbolic conservation laws

Thc devclopment of hp·version discontinuous Galerkin methods for hyperholic conservalion laws is presented in this work. A priori error estimates are dcrived for a model class of linear hyperbolic conservation laws. These estimates arc obtained using a ncw mesh-dependcnt norm that rel1ects thc dependcnce of the approximate solution on thc local element size and the local order of approximation....

متن کامل

Approximate Lax-Wendroff discontinuous Galerkin methods for hyperbolic conservation laws

The Lax-Wendro↵ time discretization is an alternative method to the popular total variation diminishing Runge-Kutta time discretization of discontinuous Galerkin schemes for the numerical solution of hyperbolic conservation laws. The resulting fully discrete schemes are known as LWDG and RKDG methods, respectively. Although LWDG methods are in general more compact and e cient than RKDG methods ...

متن کامل

Moving Mesh Discontinuous Galerkin Method for Hyperbolic Conservation Laws

In this paper, a moving mesh discontinuous Galerkin (DG) method is developed to solve the nonlinear conservation laws. In the mesh adaptation part, two issues have received much attention. One is about the construction of the monitor function which is used to guide the mesh redistribution. In this study, a heuristic posteriori error estimator is used in constructing the monitor function. The se...

متن کامل

A hybridized discontinuous Petrov–Galerkin scheme for scalar conservation laws

We present a hybridized discontinuous Petrov–Galerkin (HDPG) method for the numerical solution of steady and time-dependent scalar conservation laws. The method combines a hybridization technique with a local Petrov–Galerkin approach in which the test functions are computed to maximize the inf-sup condition. Since the Petrov–Galerkin approach does not guarantee a conservative solution, we propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2017

ISSN: 0096-3003

DOI: 10.1016/j.amc.2016.07.030