A Rough Set Bounded Spatially Constrained Asymmetric Gaussian Mixture Model for Image Segmentation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rough Set Bounded Spatially Constrained Asymmetric Gaussian Mixture Model for Image Segmentation

Accurate image segmentation is an important issue in image processing, where Gaussian mixture models play an important part and have been proven effective. However, most Gaussian mixture model (GMM) based methods suffer from one or more limitations, such as limited noise robustness, over-smoothness for segmentations, and lack of flexibility to fit data. In order to address these issues, in this...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

Spatially Constrained Mixture Model and Image Segmentation: A Review

The mixture model is a commonly used approach for image segmentation. However, it doesn’t consider the spatial information. In order to overcome this disadvantage, several spatially constrained mixture models have been proposed. In this paper, these spatially constrained mixture models and their experimental results on synthetic and real world images are presented. These experimental results de...

متن کامل

Image Segmentation Using Gaussian Mixture Model

Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact, a new numer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLOS ONE

سال: 2017

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0168449