A Robust High-dimensional Data Reduction Method
نویسندگان
چکیده
منابع مشابه
Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملRobust Ridge Regression for High-Dimensional Data
Ridge regression, being based on the minimization of a quadratic loss function, is sensitive to outliers. Current proposals for robust ridge regression estimators are sensitive to bad leverage observations, cannot be employed when the number of predictors p is larger than the number of observations n; and have a low robustness when the ratio p=n is large. In this paper a ridge regression esti...
متن کاملRobust PCA for High-Dimensional Data
We consider the dimensionality-reduction problem for a contaminated data set in a very high dimensional space, i.e., the problem of finding a subspace approximation of observed data, where the number of observations is of the same magnitude as the number of variables of each observation, and the data set contains some outlying observations. We propose a High-dimension Robust Principal Component...
متن کاملRobust clustering of high-dimensional data
We address the problem of robust clustering of high dimensional data, which is recurrent in real-world applications. Existing robust clustering methods are unfortunately sensitive in high dimension, while existing approaches for high-dimensional data are in general not robust. We propose a hybrid iterative EM-based algorithm that combines an efficient high-dimensional clustering algorithm and t...
متن کاملA method for 2-dimensional inversion of gravity data
Applying 2D algorithms for inverting the potential field data is more useful and efficient than their 3D counterparts, whenever the geologic situation permits. This is because the computation time is less and modeling the subsurface is easier. In this paper we present a 2D inversion algorithm for interpreting gravity data by employing a set of constraints including minimum distance, smoothness,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Virtual Reality
سال: 2010
ISSN: 1081-1451
DOI: 10.20870/ijvr.2010.9.1.2762