A result on Ulam stability impulsive fractional integro-differential equation
نویسندگان
چکیده
منابع مشابه
Mittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation
In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.
متن کاملHyers–Ulam–Rassias stability of impulsive Volterra integral equation via a fixed point approach
In this paper, we establish the Hyers--Ulam--Rassias stability and the Hyers--Ulam stability of impulsive Volterra integral equation by using a fixed point method.
متن کاملFractional nonlocal impulsive quasilinear multi-delay integro-differential systems
Correspondence: [email protected] Department of Mathematics, Faculty of Science, Guelma University Guelma, Algeria Abstract In this article, sufficient conditions for the existence result of quasilinear multi-delay integro-differential equations of fractional orders with nonlocal impulsive conditions in Banach spaces have been presented using fractional calculus, resolvent operators, and ...
متن کاملUlam Stability for Impulsive Discontinuous Partial Fractional Differential Equations in Banach Algebras
In this paper, we investigate some existence and Ulam’s type stability concepts of fixed point inclusions for a class of partial discontinuous fractional order differential equations with impulses in Banach algebras.
متن کاملThe existence result of a fuzzy implicit integro-differential equation in semilinear Banach space
In this paper, the existence and uniqueness of the solution of a nonlinear fully fuzzy implicit integro-differential equation arising in the field of fluid mechanics is investigated. First, an equivalency lemma is presented by which the problem understudy is converted to the two different forms of integral equation depending on the kind of differentiability of the solution. Then...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2018
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1139/1/012054