A relative spannedness for log canonical pairs and quasi-log canonical pairs
نویسندگان
چکیده
We establish a relative spannedness for log canonical pairs, which is generalization of the basepoint-freeness varieties with log-terminal singularities by Andreatta--Wiśniewski. Moreover, we quasi-log pairs.
منابع مشابه
Non-vanishing Theorem for Log Canonical Pairs
We obtain a correct generalization of Shokurov’s nonvanishing theorem for log canonical pairs. It implies the base point free theorem for log canonical pairs. We also prove the rationality theorem for log canonical pairs. As a corollary, we obtain the cone theorem for log canonical pairs. We do not need Ambro’s theory of quasi-log varieties.
متن کاملEffective Base Point Free Theorem for Log Canonical Pairs
We prove Kollár’s effective base point free theorem for log canonical pairs.
متن کاملEffective Base Point Free Theorem for Log Canonical Pairs Ii
We prove Angehrn-Siu type effective base point freeness and point separation for log canonical pairs.
متن کاملLog Canonical Singularities and Complete Moduli of Stable Pairs
0.1. This paper consists of two parts. In the first part, assuming the log Minimal Model Program (which is currently only known to be true in dim ≤ 3), we construct the complete moduli of “stable pairs” (X,B) of projective schemes with divisors that generalize the moduli space of n-pointed stable curves Mg,n to arbitrary dimension. The construction itself is a direct generalization of that of [...
متن کامل2 00 9 Introduction to the log minimal model program for log canonical pairs
We describe the foundation of the log minimal model program for log canonical pairs according to Ambro’s idea. We generalize Kollár’s vanishing and torsion-free theorems for embedded simple normal crossing pairs. Then we prove the cone and contraction theorems for quasi-log varieties, especially, for log canonical pairs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annali della Scuola normale superiore di Pisa. Classe di scienze
سال: 2022
ISSN: ['0391-173X', '2036-2145']
DOI: https://doi.org/10.2422/2036-2145.202005_019