A relative spannedness for log canonical pairs and quasi-log canonical pairs

نویسندگان

چکیده

We establish a relative spannedness for log canonical pairs, which is generalization of the basepoint-freeness varieties with log-terminal singularities by Andreatta--Wiśniewski. Moreover, we quasi-log pairs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-vanishing Theorem for Log Canonical Pairs

We obtain a correct generalization of Shokurov’s nonvanishing theorem for log canonical pairs. It implies the base point free theorem for log canonical pairs. We also prove the rationality theorem for log canonical pairs. As a corollary, we obtain the cone theorem for log canonical pairs. We do not need Ambro’s theory of quasi-log varieties.

متن کامل

Effective Base Point Free Theorem for Log Canonical Pairs

We prove Kollár’s effective base point free theorem for log canonical pairs.

متن کامل

Effective Base Point Free Theorem for Log Canonical Pairs Ii

We prove Angehrn-Siu type effective base point freeness and point separation for log canonical pairs.

متن کامل

Log Canonical Singularities and Complete Moduli of Stable Pairs

0.1. This paper consists of two parts. In the first part, assuming the log Minimal Model Program (which is currently only known to be true in dim ≤ 3), we construct the complete moduli of “stable pairs” (X,B) of projective schemes with divisors that generalize the moduli space of n-pointed stable curves Mg,n to arbitrary dimension. The construction itself is a direct generalization of that of [...

متن کامل

2 00 9 Introduction to the log minimal model program for log canonical pairs

We describe the foundation of the log minimal model program for log canonical pairs according to Ambro’s idea. We generalize Kollár’s vanishing and torsion-free theorems for embedded simple normal crossing pairs. Then we prove the cone and contraction theorems for quasi-log varieties, especially, for log canonical pairs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali della Scuola normale superiore di Pisa. Classe di scienze

سال: 2022

ISSN: ['0391-173X', '2036-2145']

DOI: https://doi.org/10.2422/2036-2145.202005_019