A regular characterization of graph languages definable in monadic second-order logic
نویسندگان
چکیده
منابع مشابه
Monadic second-order definable graph orderings
We study the question of whether, for a given class of finite graphs, one can define, for each graph of the class, a linear ordering in monadic second-order logic, possibly with the help of monadic parameters. We consider two variants of monadic second-order logic: one where we can only quantify over sets of vertices and one where we can also quantify over sets of edges. For several special cas...
متن کاملMonadic Second-Order Definable Graph Transductions: A Survey
Courcelle, B., Monadic second-order definable graph transductions: a survey, Theoretical Computer Science 126 (1994) 53-75. Formulas of monadic second-order logic can be used to specify graph transductions, i.e., multivalued functions from graphs to graphs. We obtain in this way classes of graph transductions, called monadic second-order definable graph transductions (or, more simply, d&able tr...
متن کاملGraph structure and Monadic second-order logic
Exclusion of minor, vertex-minor, induced subgraph Tree-structuring Monadic second-order logic : expression of properties, queries, optimization functions, number of configurations. Mainly useful for tree-structured graphs (Second-order logic useless) Tools to be presented Algebraic setting for tree-structuring of graphs Recognizability = finite congruence ≡ inductive computability ≡ finite det...
متن کاملGraph equivalences and decompositions definable in Monadic Second-Order Logic. The case of Circle Graphs
Many graph properties and graph transformations can be formalized inMonadic Second-Order logic. This language is the extension of First-Order logic allowing variables denoting sets of elements. In the case of graphs, these elements can be vertices, and in some cases edges. Monadic second-order graph properties can be checked in linear time on the class of graphs of tree-width at most k for any ...
متن کاملOn the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic
We discuss the parametrized complexity of counting and evaluation problems on graphs where the range of counting is deenable in Monadic Second Order Logic. We show that for bounded tree-width these problems are solvable in polynomial time. The same holds for bounded clique width in the cases, where the decomposition , which establishes the bound on the clique{width, can be computed in polynomia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 1991
ISSN: 0304-3975
DOI: 10.1016/0304-3975(91)90078-g