A Proximal Bundle Method with Approximate Subgradient Linearizations
نویسندگان
چکیده
منابع مشابه
Composite proximal bundle method
We consider minimization of nonsmooth functions which can be represented as the composition of a positively homogeneous convex function and a smooth mapping. This is a sufficiently rich class that includes max-functions, largest eigenvalue functions, and norm-1 regularized functions. The bundle method uses an oracle that is able to compute separately the function and subgradient information for...
متن کاملA Proximal Bundle Method for Nonconvex Functions with Inexact Oracles
For a class of nonconvex nonsmooth functions, we consider the problem of computing an approximate critical point, in the case of inexact oracles. The latter means that only an inexact function value and an inexact subgradient are available, at any given point. We assume that the errors in function and subgradient evaluations are merely bounded, and in principle need not vanish in the limit. We ...
متن کاملA Nonmonotone Proximal Bundle Method with (Potentially) Continuous Step Decisions
We present a convex nondifferentiable minimization algorithm of proximal bundle type that does not rely on measuring descent of the objective function to declare the so-called serious steps; rather, a merit function is defined which is decreased at each iteration, leading to a (potentially) continuous choice of the stepsize between zero (the null step) and one (the serious step). By avoiding th...
متن کاملAn infeasible-point subgradient method using adaptive approximate projections
We propose a new subgradient method for the minimization of nonsmooth convex functions over a convex set. To speed up computations we use adaptive approximate projections only requiring to move within a certain distance of the exact projections (which decreases in the course of the algorithm). In particular, the iterates in our method can be infeasible throughout the whole procedure. Neverthele...
متن کاملA Redistributed Proximal Bundle Method for Nonconvex Optimization
Proximal bundle methods have been shown to be highly successful optimization methods for unconstrained convex problems with discontinuous first derivatives. This naturally leads to the question of whether proximal variants of bundle methods can be extended to a nonconvex setting. This work proposes an approach based on generating cutting-planes models, not of the objective function as most bund...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2006
ISSN: 1052-6234,1095-7189
DOI: 10.1137/040603929