A proof of the Faber intersection number conjecture

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proof of the Faber Intersection Number Conjecture

We prove the Faber intersection number conjecture and other more general results by using a recursion formula of n-point functions for intersection numbers on moduli spaces of curves. We also present several conjectural properties of Gromov-Witten invariants generalizing results on intersection numbers.

متن کامل

A clone-theoretic formulation of the Erdös-Faber-Lovász conjecture

The Erdős–Faber–Lovász conjecture states that if a graph G is the union of n cliques of size n no two of which share more than one vertex, then χ(G) = n. We provide a formulation of this conjecture in terms of maximal partial clones of partial operations on a set.

متن کامل

A short proof of the maximum conjecture in CR dimension one

In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...

متن کامل

On the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture

The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...

متن کامل

Proof of the Local Rem Conjecture for Number Partitioning

Abstract. The number partitioning problem is a classic problem of combinatorial optimization in which a set of n numbers is partitioned into two subsets such that the sum of the numbers in one subset is as close as possible to the sum of the numbers in the other set. When the n numbers are i.i.d. variables drawn from some distribution, the partitioning problem turns out to be equivalent to a me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2009

ISSN: 0022-040X

DOI: 10.4310/jdg/1261495334