A problem of invariance for Lebesgue measure

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lebesgue Measure

How do we measure the ”size” of a set in IR? Let’s start with the simplest ones: intervals. Obviously, the natural candidate for a measure of an interval is its length, which is used frequently in differentiation and integration. For any bounded interval I (open, closed, half-open) with endpoints a and b (a ≤ b), the length of I is defined by `(I) = b − a. Of course, the length of any unbounded...

متن کامل

Randomness – beyond Lebesgue Measure

Much of the recent research on algorithmic randomness has focused on randomness for Lebesgue measure. While, from a computability theoretic point of view, the picture remains unchanged if one passes to arbitrary computable measures, interesting phenomena occur if one studies the the set of reals which are random for an arbitrary (continuous) probability measure or a generalized Hausdorff measur...

متن کامل

A Version of Lebesgue Decomposition Theorem for Non-additive Measure

In this paper, Lebesgue decomposition type theorems for non-additive measure are shown under the conditions of null-additivity, converse null-additivity, weak null-additivity and σ-null-additivity, etc.. In our discussion, the monotone continuity of set function is not required.

متن کامل

Generalized Aggregate Uncertainty Measure 2 for Uncertainty Evaluation of a Dezert-Smarandache Theory based Localization Problem

In this paper, Generalized Aggregated Uncertainty measure 2 (GAU2), as a newuncertainty measure, is considered to evaluate uncertainty in a localization problem in which cameras’images are used. The theory that is applied to a hierarchical structure for a decision making to combinecameras’ images is Dezert-Smarandache theory. To evaluate decisions, an analysis of uncertainty isexecuted at every...

متن کامل

Bounded Archiving using the Lebesgue Measure

Many modern multiobjective evolutionary algorithms (MOEAs) store the points discovered during optimization in an external archive, separate from the main population, as a source of innovation and/or for presentation at the end of a run. Maintaining a bound on the size of the archive may be desirable or necessary for several reasons, but choosing which points to discard and which to keep in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1979

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-42-1-123-125