A priori error estimate of a multiscale finite element method for transport modeling
نویسندگان
چکیده
منابع مشابه
A Priori Error Estimate of a Multiscale Finite Element Method for Transport Modeling
This work proposes an a priori error estimate of a multiscale finite element method to solve convection-diffusion problems where both velocity and diffusion coefficient exhibit strong variations at a scale which is much smaller than the domain of resolution. In that case, classical discretization methods, used at the scale of the heterogeneities, turn out to be too costly. Our method, introduce...
متن کاملA Multiscale Finite Element Method for Transport Modeling
This work proposes a new multiscale finite element method to solve convectiondiffusion problems where both velocity and diffusion coefficient exhibit strong variations at a much smaller scale than the domain of resolution. In that case, classical discretization methods, used at the scale of the heterogeneities, turn out to be too costly or useless. The method, introduced in this paper, aims at ...
متن کاملA posteriori error estimate in quantities of interest for the finite element heterogeneous multiscale method
We present an a posteriori error analysis in quantities of interest for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. The multiscale method is based on a macro-to-micro formulation, where the macroscopic physical problem is discretized in a macroscopic finite element space and the missing macroscopic data is recovered on-the-fly using the so...
متن کاملA posteriori error estimate for the mixed finite element method
A computable error bound for mixed finite element methods is established in the model case of the Poisson–problem to control the error in the H(div,Ω) ×L2(Ω)–norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-DouglasFortin-Marini elements. 1. Mixed method for the Poisson problem Mixed finite element methods are well-e...
متن کاملA Finite Element Heterogeneous Multiscale Method with Improved Control over the Modeling Error
Multiscale partial differential equations (PDEs) are difficult to solve by traditional numerical methods due to the need to resolve the small wavelengths in the media over the entire computational domain. We develop and analyze a Finite Element Heterogeneous Multiscale Method (FE-HMM) for approximating the homogenized solutions of multiscale PDEs of elliptic, parabolic, and hyperbolic type. Typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SeMA Journal
سال: 2014
ISSN: 2254-3902,2281-7875
DOI: 10.1007/s40324-014-0023-8