A Powerful Variant-Set Association Test Based on Chi-Square Distribution

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Chi Square Test

The Chi square test is a statistical test which measures the association between two categorical variables. A working knowledge of tests of this nature are important for the chiropractor and osteopath in order to be able to critically appraise the literature.

متن کامل

Spectrum sensing method based on Goodness of Fit test using chi-square distribution

In cognitive radio, spectrum sensing is a challenging task. In this letter, a new spectrum sensing method is proposed based on Goodness of Fit test (GoF) of the energy of the received samples with a chi-square distribution. We derive the test statistic and evaluate the performance of the proposed method by Monte Carlo simulations. It is shown that our proposed spectrum sensing method outperform...

متن کامل

The bivariate noncentral chi-square distribution - A compound distribution approach

This paper proposes the bivariate noncentral chi-square (BNC) distribution by compounding the Poisson probabilities with the bivariate central chi-square distribution. The probability density and cumulative distribution functions of the joint distribution of the two noncentral chi-square variables are derived for arbitrary values of the correlation coefficient, degrees of freedom(s), and noncen...

متن کامل

Chi-Square Test for Goodness of Fit

Scientists often use the Chi-square (χ) test to determine the “goodness of fit” between theoretical and experimental data. In this test, we compare observed values with theoretical or expected values. Observed values are those that the researcher obtains empirically through direct observation. The theoretical or expected values are developed on the basis of an established theory or a working hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Genetics

سال: 2017

ISSN: 1943-2631

DOI: 10.1534/genetics.117.300287