A posteriori estimates for the Stokes eigenvalue problem
نویسندگان
چکیده
منابع مشابه
A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
In this paper we obtain a priori and a posteriori error estimates for stabilized loworder mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, u...
متن کاملA Posteriori Error Estimates for the Steklov Eigenvalue Problem
In this paper we introduce and analyze an a posteriori error estimator for the linear finite element approximations of the Steklov eigenvalue problem. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. Finally, we prove that the vo...
متن کاملA Posteriori Error Estimates for the Stokes Equations: a Comparison
When numerically solving a set of partial differential equations through a finite element strategy associated with a weak formulation, one usually faces the problem of increasing the accuracy of the solution without adding unnecessary degrees of freedom in non-critical parts of the computational domain. In order to identify these regions, indicators were created which allow their automatic dete...
متن کاملA posteriori error estimates for the finite element approximation of the Stokes problem
In this paper we propose a new technique to obtain upper and lower bounds on the energy norm of the error in the velocity field, for the Stokes problem. It relies on a splitting of the velocity error in two contributions: a projection error, that quantifies the distance of the computed solution to the space of divergence free functions, and an error in satisfying the momentum equation. We will ...
متن کاملA posteriori estimates for approximations of time-dependent Stokes equations
In this paper, we derive a posteriori error estimates for space-discrete approximations of the timedependent Stokes equations. By using an appropriate Stokes reconstruction operator, we are able to write an auxiliary error equation, in pointwise form, that satisfies the exact divergence-free condition. Thus, standard energy estimates from partial differential equation theory can be applied dire...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Methods for Partial Differential Equations
سال: 2009
ISSN: 0749-159X,1098-2426
DOI: 10.1002/num.20342