A posteriori error estimates for the Crank--Nicolson method for parabolic equations
نویسندگان
چکیده
منابع مشابه
A posteriori error estimates for the Crank-Nicolson method for parabolic equations
Abstract. We derive optimal order a posteriori error estimates for time discretizations by both the Crank–Nicolson and the Crank–Nicolson–Galerkin methods for linear and nonlinear parabolic equations. We examine both smooth and rough initial data. Our basic tool for deriving a posteriori estimates are second order Crank–Nicolson reconstructions of the piecewise linear approximate solutions. The...
متن کاملA Posteriori Error Control for Fully Discrete Crank-Nicolson Schemes
We derive residual-based a posteriori error estimates of optimal order for fully discrete approximations for linear parabolic problems. The time discretization uses the Crank– Nicolson method, and the space discretization uses finite element spaces that are allowed to change in time. The main tool in our analysis is the comparison with an appropriate reconstruction of the discrete solution, whi...
متن کاملA posteriori error estimates for non-linear parabolic equations
We consider space-time discretizations of non-linear parabolic equations. The temporal discretizations in particular cover the implicit Euler scheme and the mid-point rule. For linear equations they correspond to the well-known A-stable θ-schemes. The spatial discretizations consist of standard conforming finite element spaces that can vary from one time-level to the other. The spatial meshes m...
متن کاملA posteriori error estimates for linear parabolic equations
We consider discretizations of linear parabolic equations by A-stable θ-schemes in time and conforming finite elements in space. For these discretizations we derive a residual a posteriori error estimator. The estimator yields upper bounds on the error which are global in space and time and lower bounds that are global in space and local in time. The error estimates are fully robust in the sens...
متن کاملA Posteriori Error Estimates for the Bdf2 Method for Parabolic Equations
Abstract. We derive optimal order, residual-based a posteriori error estimates for time discretizations by the two–step BDF method for linear parabolic equations. Appropriate reconstructions of the approximate solution play a key role in the analysis. To utilize the BDF method we employ one step by both the trapezoidal method or the backward Euler scheme. Our a posteriori error estimates are of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2005
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-05-01800-4