A Picone identity for variable exponent operators and applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Picone-type Identity for Pseudo P-laplacian with Variable Power

A Picone type identity is established for homogeneous differential operators involving the pseudo p-Laplacian with variable exponent p = p(x). Using this identity, it is shown that the classical Sturmian theory extends to the associated partial differential equations.

متن کامل

The Picone Identity for a Class of Partial Differential Equations

The Picone-type identity for the half-linear second order partial differential equation n i=1 ∂ ∂xi Φ ∂u ∂xi + c(x)Φ(u) = 0, Φ(u) := |u|u, p > 1, is established and some applications of this identity are suggested.

متن کامل

Concentration-compactness Principle for Variable Exponent Spaces and Applications

In this article, we extend the well-known concentration compactness principle by Lions to the variable exponent case. We also give some applications to the existence problem for the p(x)-Laplacian with critical growth.

متن کامل

The Concentration-compactness Principle for Variable Exponent Spaces and Applications

In this paper we extend the well-known concentration – compactness principle of P.L. Lions to the variable exponent case. We also give some applications to the existence problem for the p(x)−Laplacian with critical growth.

متن کامل

Littlewood-Paley Operators on Morrey Spaces with Variable Exponent

By applying the vector-valued inequalities for the Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, the boundedness of the Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g μ *-functions, and their commutators generated by BMO functions, is obtained on the Morrey spaces with variable exponent.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Nonlinear Analysis

سال: 2019

ISSN: 2191-950X

DOI: 10.1515/anona-2020-0003