A periodic map for linear barycentric rational trigonometric interpolation
نویسندگان
چکیده
منابع مشابه
Recent advances in linear barycentric rational interpolation
Well-conditioned, stable and infinitely smooth interpolation in arbitrary nodes is by no means a trivial task, even in the univariate setting considered here; already the most important case, equispaced points, is not obvious. Certain approaches have nevertheless experienced significant developments in the last decades. In this paper we review one of them, linear barycentric rational interpolat...
متن کاملConvergence of Linear Barycentric Rational Interpolation for Analytic Functions
Polynomial interpolation to analytic functions can be very accurate, depending on the distribution of the interpolation nodes. However, in equispaced nodes and the like, besides being badly conditioned, these interpolants fail to converge even in exact arithmetic in some cases. Linear barycentric rational interpolation with the weights presented by Floater and Hormann can be viewed as blended p...
متن کاملMonotone Rational Trigonometric Interpolation
This study is concerned with the visualization of monotone data using a piecewise C rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and other two are left free. Figures are used widely to exhibit that the pr...
متن کاملPyramid algorithms for barycentric rational interpolation
We present a new perspective on the Floater–Hormann interpolant. This interpolant is rational of degree (n, d), reproduces polynomials of degree d, and has no real poles. By casting the evaluation of this interpolant as a pyramid algorithm, we first demonstrate a close relation to Neville’s algorithm. We then derive an O(nd) algorithm for computing the barycentric weights of the Floater–Hormann...
متن کاملLebesgue Constant Minimizing Bivariate Barycentric Rational Interpolation
The barycentric form is the most stable formula for a rational interpolant on a finite interval. The choice of the barycentric weights can ensure the absence of poles on the real line, so how to choose the optimal weights becomes a key question for bivariate barycentric rational interpolation. A new optimization algorithm is proposed for the best interpolation weights based on the Lebesgue cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2020
ISSN: 0096-3003
DOI: 10.1016/j.amc.2019.124924