A PDE approach to fractional diffusion: A posteriori error analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PDE approach to fractional diffusion: A posteriori error analysis

We derive a computable a posteriori error estimator for the αharmonic extension problem, which localizes the fractional powers of elliptic operators supplemented with Dirichlet boundary conditions. Our a posteriori error estimator relies on the solution of small discrete problems on anisotropic cylindrical stars. It exhibits built-in flux equilibration and is equivalent to the energy error up t...

متن کامل

A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis

The purpose of this work is the study of solution techniques for problems involving fractional powers of symmetric coercive elliptic operators in a bounded domain with Dirichlet boundary conditions. These operators can be realized as the Dirichlet to Neumann map for a degenerate/singular elliptic problem posed on a semi-infinite cylinder, which we analyze in the framework of weighted Sobolev sp...

متن کامل

A new approach to a posteriori error estimation for convection-diffusion problems. I. Getting started

A new a posteriori error estimation technique is applied to the stationary convection-reaction-diffusion equation. In order to estimate the approximation error in the usual energy norm, the underlying bilinear form is decomposed into a computable integral and two other terms which can be estimated from above using elementary tools of functional analysis. Two auxiliary parameter-functions are in...

متن کامل

Image Restoration Using A PDE-Based Approach

 Image restoration is an essential preprocessing step for many image analysis applications. In any image restoration techniques, keeping structure of the image unchanged is very important. Such structure in an image often corresponds to the region discontinuities and edges. The techniques based on partial differential equations, such as the heat equations, are receiving considerable attention i...

متن کامل

A PDE Approach to Space-Time Fractional Parabolic Problems

We study solution techniques for parabolic equations with fractional diffusion and Caputo fractional time derivative, the latter being discretized and analyzed in a general Hilbert space setting. The spatial fractional diffusion is realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi-infinite cylinder in one more spatial dimension. We write our evolution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2015

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2015.01.001