A partial least squares approach for function-on-function interaction regression
نویسندگان
چکیده
A partial least squares regression is proposed for estimating the function-on-function model where a functional response and multiple predictors consist of random curves with quadratic interaction effects. The direct estimation usually an ill-posed problem. To overcome this difficulty, in practice, data that belong to infinite-dimensional space are generally projected into finite-dimensional basis functions. converted multivariate expansion coefficients. In phase method, variables approximated by function method. We show constructed via response, predictors, quadratic/interaction terms equivalent using expansions variables. From variables, we provide explicit formula estimate coefficient model. Because true forms models unspecified, propose forward procedure selection. finite sample performance method examined several Monte Carlo experiments two empirical analyses, results were found compare favorably existing
منابع مشابه
A robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملThe Objective Function of Partial Least Squares Regression
A simple objective function in terms of undeflated X is derived for the latent variables of PLS regression. The objective function fits into the basic framework put forward by Burnham et al. (J. Chemometrics, 10, 31-45, 1996). We show that PLS and SIMPLS differ in the constraint put on the length of the X-weight vector. It turns out that SIMPLS penalizes the length of the part of the weight vec...
متن کاملPartial Least Squares Regression (PLS)
Number of latents The same number of factors will be extracted for PLS responses as for PLS factors. The researcher must specify how many latents to extract (in SPSS the default is 5). There is no one criterion for deciding how many latents to employ. Common alternatives are: 1. Cross-validating the model with increasing numbers of factors, then choosing the number with minimum prediction error...
متن کاملPartial Least Squares (PLS) Regression
Pls regression is a recent technique that generalizes and combines features from principal component analysis and multiple regression. It is particularly useful when we need to predict a set of dependent variables from a (very) large set of independent variables (i.e., predictors). It originated in the social sciences (specifically economy, Herman Wold 1966) but became popular first in chemomet...
متن کاملPartial least squares methods: partial least squares correlation and partial least square regression.
Partial least square (PLS) methods (also sometimes called projection to latent structures) relate the information present in two data tables that collect measurements on the same set of observations. PLS methods proceed by deriving latent variables which are (optimal) linear combinations of the variables of a data table. When the goal is to find the shared information between two tables, the ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics
سال: 2021
ISSN: ['0943-4062', '1613-9658']
DOI: https://doi.org/10.1007/s00180-020-01058-z