A parallel algorithm for de novo peptide sequencing
نویسندگان
چکیده
منابع مشابه
De novo peptide sequencing by deep learning.
De novo peptide sequencing from tandem MS data is the key technology in proteomics for the characterization of proteins, especially for new sequences, such as mAbs. In this study, we propose a deep neural network model, DeepNovo, for de novo peptide sequencing. DeepNovo architecture combines recent advances in convolutional neural networks and recurrent neural networks to learn features of tand...
متن کاملUniNovo: a universal tool for de novo peptide sequencing
MOTIVATION Mass spectrometry (MS) instruments and experimental protocols are rapidly advancing, but de novo peptide sequencing algorithms to analyze tandem mass (MS/MS) spectra are lagging behind. Although existing de novo sequencing tools perform well on certain types of spectra [e.g. Collision Induced Dissociation (CID) spectra of tryptic peptides], their performance often deteriorates on oth...
متن کاملAUDENS: a tool for automated peptide de novo sequencing.
We present AUDENS, a new platform-independent open source tool for automated de novo sequencing of peptides from MS/MS data. We implemented a dynamic programming algorithm and combined it with a flexible preprocessing module which is designed to distinguish between signal and other peaks. By applying a user-defined set of heuristics, AUDENS screens through the spectrum and assigns high relevanc...
متن کاملA Hidden Markov Model for de Novo Peptide Sequencing
De novo Sequencing of peptides is a challenging task in proteome research. While there exist reliable DNA-sequencing methods, the highthroughput de novo sequencing of proteins by mass spectrometry is still an open problem. Current approaches suffer from a lack in precision to detect mass peaks in the spectrograms. In this paper we present a novel method for de novo peptide sequencing based on a...
متن کاملNovoHMM: a hidden Markov model for de novo peptide sequencing.
De novo sequencing of peptides poses one of the most challenging tasks in data analysis for proteome research. In this paper, a generative hidden Markov model (HMM) of mass spectra for de novo peptide sequencing which constitutes a novel view on how to solve this problem in a Bayesian framework is proposed. Further extensions of the model structure to a graphical model and a factorial HMM to su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Systems Biology
سال: 2007
ISSN: 1752-0509
DOI: 10.1186/1752-0509-1-s1-p61