A Paradoxical Evolutionary Mechanism in Stochastically Switching Environments
نویسندگان
چکیده
منابع مشابه
A Paradoxical Evolutionary Mechanism in Stochastically Switching Environments
Organisms with environmental sensors that guide survival are considered more likely to be favored by natural selection if they possess more accurate sensors. In this paper, we develop a theoretical model which shows that under certain conditions of environmental stochasticity, selection actually favors sensors of lower accuracy. An analogy between this counter-intuitive phenomenon and the well-...
متن کاملMean Evolutionary Dynamics for Stochastically Switching Environments
Populations of replicating entities frequently experience sudden or cyclical changes in environment. We explore the implications of this phenomenon via a environmental switching parameter in several common evolutionary dynamics models including the replicator dynamic for linear symmetric and asymmetric landscapes, the Moran process, and incentive dynamics. We give a simple relationship between ...
متن کاملOptimization in Uncertain and Complex Dynamic Environments with Evolutionary Methods
In the real world, many of the optimization issues are dynamic, uncertain, and complex in which the objective function or constraints can be changed over time. Consequently, the optimum of these issues is changed nonlinearly. Therefore, the optimization algorithms not only should search the global optimum value in the space but also should follow the path of optimal change in dynamic environmen...
متن کاملSensitivity to Switching Rates in Stochastically Switched Odes
We consider a stochastic process driven by a linear ordinary differential equation whose right-hand side switches at exponential times between a collection of different matrices. We construct planar examples that switch between two matrices where the individual matrices and the average of the two matrices are all Hurwitz (all eigenvalues have strictly negative real part), but nonetheless the pr...
متن کاملA paradoxical teratogenic mechanism for retinoic acid.
Retinoic acid, an active metabolite of vitamin A, plays essential signaling roles in mammalian embryogenesis. Nevertheless, it has long been recognized that overexposure to vitamin A or retinoic acid causes widespread teratogenesis in rodents as well as humans. Although it has a short half-life, exposure to high levels of retinoic acid can disrupt development of yet-to-be formed organs, includi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2016
ISSN: 2045-2322
DOI: 10.1038/srep34889