A numerical scheme for the optimal control of groundwater pollution

نویسندگان

چکیده

A scheme is proposed for the numerical study of optimal control problems related to groundwater quality management in case nonpoint-source pollution. The corresponding state equation a system coupled nonlinear partial differential equations. approximation given by finite volume based on two-point flux with upwind mobilities embedded an iterative fixed point approximation. analysis convergence allows establish existence and uniqueness results under reasonable assumptions. Numerical illustrations performance algorithm are realistic situations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groundwater Pollution Control

Groundwater is an important source of potable water because it is abundant and readily available in many locations and often requires little or no treatment. In 1995, groundwater accounted for approximately 20% of potable water use in the U.S., and approximately 50% of the U.S. population relied on groundwater for their source of drinking water. In most European countries, groundwater accounts ...

متن کامل

A numerical approach for optimal control model of the convex semi-infinite programming

In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A Central Difference Numerical Scheme for Fractional Optimal Control Problems

This paper presents a modified numerical scheme for a class of Fractional Optimal Control Problems (FOCPs) formulated in Agrawal (2004) where a Fractional Derivative (FD) is defined in the Riemann-Liouville sense. In this scheme, the entire time domain is divided into several subdomains, and a fractional derivative (FDs) at a time node point is approximated using a modified Grünwald-Letnikov ap...

متن کامل

An Efficient Numerical Scheme for Solving Fractional Optimal Control Problems

Abstract: This paper presents an accurate numerical method for solving a class of fractional optimal control problems (FOCPs). The fractional derivative in these problems is in the Caputo sense. In this technique, we approximate FOCPs and end up with a finite dimensional problem. The method is based on the combination of the useful properties of Chebyshev polynomials approximation and finite di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Methods for Partial Differential Equations

سال: 2023

ISSN: ['1098-2426', '0749-159X']

DOI: https://doi.org/10.1002/num.22999