A Novel Rolling Bearing Fault Diagnosis Method Based on BLS and CNN with Attention Mechanism

نویسندگان

چکیده

In actual industrial application scenarios, noise pollution makes it difficult to extract fault features accurately via conventional methods. A novel method for rolling bearing diagnosis combining a convolutional neural network (CNN), an attention mechanism squeeze-and-excitation (SENet) module and broad learning system (BLS) is proposed (SECNN–BLS). The one-dimensional vibration signal processed by using multiple short-time Fourier transforms (STFT); the two-dimensional image in time-frequency domain used as model input. CNN feature extraction process, SENet introduced replace convolution layer, global information obtained through squeeze operation. Excitation operation captures importance of channels, assigns weights adaptively improve on important eliminates interference irrelevant without increasing spatial temporal complexity. weighted representation then transferred BLS has characteristics flat structure ridge regression quickly solve weights; classifier, can save more computing resources accuracy classification. SECNN–BLS achieved than 98% Society Machinery Failure Prevention Technology (MFPT) dataset. We also demonstrate excellent performance noisy environment.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

Fault Diagnosis Method Based on a New Supervised Locally Linear Embedding Algorithm for Rolling Bearing

In view of the complexity and nonlinearity of rolling bearings, this paper presents a new supervised locally linear embedding method (R-NSLLE) for feature extraction. In general, traditional LLE can capture the local structure of a rolling bearing. However it may lead to limited effectiveness if data is sparse or non-uniformly distributed. Moreover, like other manifold learning algorithms, the ...

متن کامل

Neural-network-based motor rolling bearing fault diagnosis

Motor systems are very important in modern society. They convert almost 60% of the electricity produced in the U.S. into other forms of energy to provide power to other equipment. In the performance of all motor systems, bearings play an important role. Many problems arising in motor operations are linked to bearing faults. In many cases, the accuracy of the instruments and devices used to moni...

متن کامل

Research on Rolling Bearing Fault Diagnosis with Adaptive Frequency Selection based on LabVIEW

In order to study the on-line fault monitoring and diagnosing for the rolling bearing this paper proposes a resonant demodulation measurement with an adaptive frequency selection based on LabVIEW. The wavelet packet function is used to decompose and reconstruct the measured vibration signal to extract the fault information accurately under the noise background. The kurtosis value of the signal ...

متن کامل

Study on A Fault Diagnosis Method of Rolling Element Bearing Based on Improved ACO and SVM Model

The vibration signal is nonstationary and it is difficult to acquire the sample with typical fault. An improved ACO algorithm based on adaptive control parameters is introduced into SVM model to propose a new fault diagnosis (IMASFD) method in this paper. In the IMASFD method, the EMD method is used to decompose fault vibration signal into IMF components, the energy of IMF components is selecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machines

سال: 2023

ISSN: ['2075-1702']

DOI: https://doi.org/10.3390/machines11020279