A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral Solutions of Fractional Differential Equations
نویسندگان
چکیده
منابع مشابه
A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral Solutions of Fractional Differential Equations
Herein, two numerical algorithms for solving some linear and nonlinear fractional-order differential equations are presented and analyzed. For this purpose, a novel operational matrix of fractional-order derivatives of Fibonacci polynomials was constructed and employed along with the application of the tau and collocation spectral methods. The convergence and error analysis of the suggested Fib...
متن کاملUsing operational matrix for numerical solution of fractional differential equations
In this article, we have discussed a new application of modification of hat functions on nonlinear multi-order fractional differential equations. The operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. The method provides the solution in the form of a rapidly convergent series. Furthermore, error analysis of the pro...
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملExistence of solutions of boundary value problems for Caputo fractional differential equations on time scales
In this paper, we study the boundary-value problem of fractional order dynamic equations on time scales, $$ ^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin [0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1
متن کاملStability of Solutions to Impulsive Caputo Fractional Differential Equations
Stability of the solutions to a nonlinear impulsive Caputo fractional differential equation is studied using Lyapunov like functions. The derivative of piecewise continuous Lyapunov functions among the nonlinear impulsive Caputo differential equation of fractional order is defined. This definition is a natural generalization of the Caputo fractional Dini derivative of a function. Several suffic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2016
ISSN: 1099-4300
DOI: 10.3390/e18100345