A note on the arithmetic-geometric mean inequality for every unitarily invariant matrix norm
نویسندگان
چکیده
منابع مشابه
Perturbation bounds for $g$-inverses with respect to the unitarily invariant norm
Let complex matrices $A$ and $B$ have the same sizes. Using the singular value decomposition, we characterize the $g$-inverse $B^{(1)}$ of $B$ such that the distance between a given $g$-inverse of $A$ and the set of all $g$-inverses of the matrix $B$ reaches minimum under the unitarily invariant norm. With this result, we derive additive and multiplicative perturbation bounds of the nearest per...
متن کاملBest Upper Bounds Based on the Arithmetic-geometric Mean Inequality
In this paper we obtain a best upper bound for the ratio of the extreme values of positive numbers in terms of the arithmetic-geometric means ratio. This has immediate consequences for condition numbers of matrices and the standard deviation of equiprobable events. It also allows for a refinement of Schwarz’s vector inequality.
متن کاملAn Arithmetic and Geometric Mean Invariant
A positive real interval, [a, b] can be partitioned into sub-intervals such that sub-interval widths divided by sub-interval ”‘average”’ values remains constant. That both Arithmetic Mean and Geometric Mean ”‘average”’ values produce constant ratios for the same log scale is the stated invariance proved in this short note. The continuous analog is briefly considered and shown to have similar pr...
متن کاملA Relationship between Subpermanents and the Arithmetic-Geometric Mean Inequality
Using the arithmetic-geometric mean inequality, we give bounds for k-subpermanents of nonnegative n × n matrices F. In the case k = n, we exhibit an n 2-set S whose arithmetic and geometric means constitute upper and lower bounds for per(F)/n!. We offer sharpened versions of these bounds when F has zero-valued entries.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1994
ISSN: 0024-3795
DOI: 10.1016/0024-3795(94)90439-1