A note on symmetric properties of the multiple q-Euler zeta functions and higher-order q-Euler polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

q-EULER NUMBERS AND POLYNOMIALS ASSOCIATED WITH BASIC ZETA FUNCTIONS

Throughout this paper Zp, Qp, C and Cp will respectively denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field and the completion of algebraic closure of Qp. The p-adic absolute value in Cp is normalized so that |p|p = 1 p . When one talks of q-extension, q is variously considered as an indeterminate, a complex number q ∈ C or a p-adic numbe...

متن کامل

Symmetric Identities of the q-Euler Polynomials

an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we study some symmetric identities of q-Euler numbers and polynomials. From these properties, we derive several identities of q-Euler numbers and polynomials.

متن کامل

q-ANALOGUE OF EULER-BARNES MULTIPLE ZETA FUNCTIONS

Recently (see [1]) I has introduced an interesting the Euler-Barnes multiple zeta function. In this paper we construct the q-analogue of Euler-Barnes multiple zeta function which interpolates the q-analogue of Frobenius-Euler numbers of higher order at negative integers. §

متن کامل

Note on q-Extensions of Euler Numbers and Polynomials of Higher Order

In [14] Ozden-Simsek-Cangul constructed generating functions of higher-order twisted (h, q)-extension of Euler polynomials and numbers, by using p-adic q-deformed fermionic integral on Zp. By applying their generating functions, they derived the complete sums of products of the twisted (h, q)-extension of Euler polynomials and numbers, see[13, 14]. In this paper we cosider the new q-extension o...

متن کامل

NOTE ON THE GENERALIZATION OF THE HIGHER ORDER q-GENOCCHI NUMBERS AND q-EULER NUMBERS

Cangul-Ozden-Simsek[1] constructed the q-Genocchi numbers of high order using a fermionic p-adic integral on Zp, and gave Witt’s formula and the interpolation functions of these numbers. In this paper, we present the generalization of the higher order q-Euler numbers and q-Genocchi numbers of Cangul-Ozden-Simsek. We define q-extensions of w-Euler numbers and polynomials, and w-Genocchi numbers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematical Sciences

سال: 2014

ISSN: 1314-7552

DOI: 10.12988/ams.2014.42117