A note on rank and nullity in coding theory
نویسندگان
چکیده
منابع مشابه
A short note on the nullity theorem
In this paper we take a close look at the nullity theorem as formulated by Markham and Fiedler in 1986. The theorem is a valuable tool in the computations with structured rank matrices, it connects ranks of subblocks of an invertible matrix A with ranks of other subblocks in his inverse A. A little earlier, Barrett and Feinsilver, 1981, proved a theorem very close to the nullity theorem, but re...
متن کاملA note on minimum rank and maximum nullity of sign patterns
The minimum rank of a sign pattern matrix is defined to be the smallest possible rank over all real matrices having the given sign pattern. The maximum nullity of a sign pattern is the largest possible nullity over the same set of matrices, and is equal to the number of columns minus the minimum rank of the sign pattern. Definitions of various graph parameters that have been used to bound maxim...
متن کاملEla a Note on Minimum Rank and Maximum Nullity of Sign Patterns
The minimum rank of a sign pattern matrix is defined to be the smallest possible rank over all real matrices having the given sign pattern. The maximum nullity of a sign pattern is the largest possible nullity over the same set of matrices, and is equal to the number of columns minus the minimum rank of the sign pattern. Definitions of various graph parameters that have been used to bound maxim...
متن کاملThe Rank+Nullity Theorem
The rank+nullity theorem states that, if T is a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W , then dim(V ) = rank(T ) + nullity(T ), where rank(T ) = dim(im(T )) and nullity(T ) = dim(ker(T )). The proof treated here is standard; see, for example, [14]: take a basis A of ker(T ) and extend it to a basis B of V , and then show that dim(im...
متن کاملRank and k-nullity of contact manifolds
We prove that the dimension of the 1-nullity distributionN(1) on a closed Sasakianmanifold M of rank l is at least equal to 2l−1 provided thatM has an isolated closed characteristic. The result is then used to provide some examples ofK-contact manifolds which are not Sasakian. On a closed, 2n+ 1-dimensional Sasakian manifold of positive bisectional curvature, we show that either the dimension o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Control
سال: 1961
ISSN: 0019-9958
DOI: 10.1016/s0019-9958(61)80053-3