A note on point-finite coverings by balls

نویسندگان

چکیده

We provide an elementary proof of a result by V. P. Fonf and C. Zanco on point-finite coverings separable Hilbert spaces. Indeed, using variation the famous argument introduced J. Lindenstrauss R. Phelps [Israel Math. 6 (1968), pp. 39–48] to prove that unit ball reflexive infinite-dimensional Banach space has uncountably many extreme points, we following result. Let X X be satisfying alttext="normal d normal e n s left-parenthesis upper X right-parenthesis greater-than 2 Superscript alef 0"> d mathvariant="normal">e mathvariant="normal">n mathvariant="normal">s ( stretchy="false">) > 2 mathvariant="normal">ℵ 0 encoding="application/x-tex">\mathrm {dens}(X)>2^{\aleph _0} , then does not admit open or closed balls, each positive radius. In second part paper, follow Fonf, M. Levin, in [J. Geom. Anal. 24 (2014), 1891–1897] previous holds also spaces are both uniformly rotund smooth.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Finite Lattice Coverings

We consider nite lattice coverings of strictly convex bodies K. For planar centrally symmetric K we characterize the nite arrangements Cn such that conv Cn Cn + K, where Cn is a subset of a covering lattice for K (which satisses some natural conditions). We prove that for a xed lattice the optimal arrangement (measured with the parametric density) is either a sausage, a socalled double sausage ...

متن کامل

a note on finite c-tidy groups

let $g$ be a group and $x in g$‎. ‎the cyclicizer of $x$ is defined to be the subset $cyc(x)=lbrace y in g mid langle x‎, ‎yrangle ; {rm is ; cyclic} rbrace$‎. ‎$g$ is said to be a tidy group if $cyc(x)$ is a subgroup for all $x in g$‎. ‎we call $g$ to be a c-tidy group if $cyc(x)$ is a cyclic subgroup for all $x in g setminus k(g)$‎, ‎where $k(g)$ is the intersection of all the cyclicizers in ...

متن کامل

A note on multiple coverings of the farthest-off points

In this work we summarize some recent results, to be included in a forthcoming paper [1]. We define μ-density as a characteristic of quality for the kind of coverings codes called multiple coverings of the farthest-off points (MCF). A concept of multiple saturating sets ((ρ, μ)-saturating sets) in projective spaces PG(N, q) is introduced. A fundamental relationship of these sets with MCF is sho...

متن کامل

On the Thinnest Coverings of Spheres and Ellipsoids with Balls in on the Thinnest Coverings of Spheres and Ellipsoids

In this paper, we present some new results on the thinnest coverings that can be obtained in Hamming or Euclidean spaces if spheres and ellipsoids are covered with balls of some radius ε. In particular, we tighten the bounds currently known for the ε-entropy of Hamming spheres of an arbitrary radius r. New bounds for the ε-entropy of Hamming balls are also derived. If both parameters ε and r ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2021

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/15510