A note on Jordan left *-centralizers on prime and semiprime rings with involution
نویسندگان
چکیده
منابع مشابه
A Note on Jordan Left ∗-Centralizers in Rings with Involution
Let R be a ring with involution. An additive mapping T : R → R is called a left ∗-centralizer (resp. Jordan left ∗-centralizer) if T (xy) = T (x)y∗ (resp. T (x2) = T (x)x∗) holds for all x, y ∈ R, and a reverse left ∗-centralizer if T (xy) = T (y)x∗ holds for all x, y ∈ R. The purpose of this paper is to solve some functional equations involving Jordan left ∗-centralizers on some appropriate su...
متن کاملOn centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملA Note on Jordan∗− Derivations in Semiprime Rings with Involution
In this paper we prove the following result. Let R be a 6−torsion free semiprime ∗−ring and let D : R → R be an additive mapping satisfying the relation D(xyx) = D(x)y∗x∗ + xD(y)x∗ + xyD(x), for all pairs x, y ∈ R. In this case D is a Jordan ∗−derivation. Mathematics Subject Classification: 16W10, 39B05
متن کاملCentralizers on prime and semiprime rings
The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let R be a noncommutative prime ring of characteristic different from two and let S and T be left centralizers on R. Suppose that [S(x), T (x)]S(x) + S(x)[S(x), T (x)] = 0 is fulfilled for all x ∈ R. If S 6= 0 (T 6= 0) then there exists λ from the extende...
متن کاملon centralizers of prime rings with involution
let $r$ be a ring with involution $*$. an additive mapping $t:rto r$ is called a left(respectively right) centralizer if $t(xy)=t(x)y$ (respectively $t(xy)=xt(y)$) for all $x,yin r$. the purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Taibah University for Science
سال: 2017
ISSN: 1658-3655
DOI: 10.1016/j.jtusci.2016.07.003