منابع مشابه
Left derivable or Jordan left derivable mappings on Banach algebras
Let $mathcal{A}$ be a unital Banach algebra, $mathcal{M}$ be a left $mathcal{A}$-module, and $W$ in $mathcal{Z}(mathcal{A})$ be a left separating point of $mathcal{M}$. We show that if $mathcal{M}$ is a unital left $mathcal{A}$-module and $delta$ is a linear mapping from $mathcal{A}$ into $mathcal{M}$, then the following four conditions are equivalent: (i) $delta$ is a Jordan left de...
متن کاملCharacterizations of Jordan derivations on triangular rings: Additive maps Jordan derivable at idempotents
Let T be a triangular ring. An additive map δ from T into itself is said to be Jordan derivable at an element Z ∈ T if δ(A)B +Aδ(B) + δ(B)A+Bδ(A) = δ(AB+BA) for any A,B ∈ T with AB + BA = Z. An element Z ∈ T is called a Jordan all-derivable point of T if every additive map Jordan derivable at Z is a Jordan derivation. In this paper, we show that some idempotents in T are Jordan all-derivable po...
متن کاملOn strongly Jordan zero-product preserving maps
In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...
متن کاملleft derivable or jordan left derivable mappings on banach algebras
let $mathcal{a}$ be a unital banach algebra, $mathcal{m}$ be a left $mathcal{a}$-module, and $w$ in $mathcal{z}(mathcal{a})$ be a left separating point of $mathcal{m}$. we show that if $mathcal{m}$ is a unital left $mathcal{a}$-module and $delta$ is a linear mapping from $mathcal{a}$ into $mathcal{m}$, then the following four conditions are equivalent: (i) $delta$ is a jordan left de...
متن کاملA Note on Spectrum Preserving Additive Maps on C*-Algebras
Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2013
ISSN: 1846-3886
DOI: 10.7153/oam-07-08