A note on GK dimension of skew polynomial extensions
نویسندگان
چکیده
منابع مشابه
Polynomial Extensions of Skew Fields
An extension L/K of skew fields is called a leftpolynomialextension with polynomial generator 0 if it has a left basis of the form 1, i3, ti’, , Bnm’ for some n. This notion of left polynomial extension is a generalisation of the notion of pseudo-linear extension, known from literature. In this paper we show that any polynomial which is the minimal polynomial over K of some element in an extens...
متن کاملSkew Polynomial Extensions over Zip Rings
Recommended by Francois Goichot In this article, we study the relationship between left right zip property of R and skew polynomial extension over R, using the skew versions of Armendariz rings.
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولOre extensions of skew $pi$-Armendariz rings
For a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-Armendariz ring, that is a generalization of both $pi$-Armendariz rings, and $(alpha,delta)$-compatible skew Armendariz rings. We first observe the basic properties of skew $pi$-Armendariz rings, and extend the class of skew $pi$-Armendariz rings through various ring extensions. We nex...
متن کاملOn annihilator ideals in skew polynomial rings
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1997
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-97-03602-2