A note on generalized chromatic number and generalized girth
نویسندگان
چکیده
منابع مشابه
A note on generalized chromatic number and generalized girth
Erdős proved that there are graphs with arbitrarily large girth and chromatic number. We study the extension of this for generalized chromatic numbers. Generalized graph coloring describes the partitioning of the vertices into classes whose induced subgraphs satisfy particular constraints. When P is a family of graphs, the P chromatic number of a graph G, written χP, is the minimum size of a pa...
متن کاملA Note on Artinianess of Certain Generalized
Let ?: R0?R be a ring homomorphism and suppose that a and a0, respectively, are ideals of R and R0 such that is an Artinian ring. Let M and N be two finitely generated R-modules and suppose that (R0,m0) is a local ring. In this note we prove that the R-modules and are Artinian for all integers i and j, whenever and . Also we will show that if a is principal, then the R-modules and ...
متن کاملDigraph Girth via Chromatic Number
Let D be a digraph. The chromatic number χ(D) of D is the smallest number of colors needed to color the vertices of D such that every color class induces an acyclic subdigraph. The girth of D is the length of a shortest directed cycle, or ∞ if D is acyclic. Let G(k, n) be the maximum possible girth of a digraph on n vertices with χ(D) > k. It is shown that G(k, n) ≥ n1/k and G(k, n) ≤ (3 log2 n...
متن کاملA Note on Circular Chromatic Number of Graphs with Large Girth and Similar Problems
In this short note, we extend the result of Galluccio, Goddyn, and Hell, which states that graphs of large girth excluding a minor are nearly bipartite. We also prove a similar result for the oriented chromatic number, from which follows in particular that graphs of large girth excluding a minor have oriented chromatic number at most 5, and for the pth chromatic number χp, from which follows in...
متن کاملGraphs with Small Generalized Chromatic Number
Let G = (V; E) denote a nite simple undirected connected graph of order n = jV j and diameter D. For any integer k 2 1; D], a proper k-colouring of G is a labelling of the vertices V such that no two distinct vertices at distance k or less have the same label. We let k (G), the k-chromatic number of G, denote the least number of labels required to achieve a proper k-colouring of G. In this pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2000
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(99)00165-x