A note on finite groups which act freely on closed surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which Finite Groups Act Freely on Spheres?

For those who know about group cohomology will know that if a group acts freely on sphere, then it has periodic cohomology. Now the group Zp×Zp does not have periodic cohomology, (just use the Künneth formula again) therefore it cannot act freely on any sphere. For those who do not know about group cohomology a finite group having periodic cohomology is equivalent to all the abelian subgroups b...

متن کامل

A Note on Absolute Central Automorphisms of Finite $p$-Groups

Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study  some properties of absolute central automorphisms of a given finite $p$-group.

متن کامل

a note on finite c-tidy groups

let $g$ be a group and $x in g$‎. ‎the cyclicizer of $x$ is defined to be the subset $cyc(x)=lbrace y in g mid langle x‎, ‎yrangle ; {rm is ; cyclic} rbrace$‎. ‎$g$ is said to be a tidy group if $cyc(x)$ is a subgroup for all $x in g$‎. ‎we call $g$ to be a c-tidy group if $cyc(x)$ is a cyclic subgroup for all $x in g setminus k(g)$‎, ‎where $k(g)$ is the intersection of all the cyclicizers in ...

متن کامل

Most Rank Two Finite Groups Act Freely on a Homotopy Product of Two Spheres

A classic result of Swan states that a finite group G acts freely on a finite homotopy sphere if and only if every abelian subgroup of G is cyclic. Following this result, Benson and Carlson conjectured that a finite group G acts freely on a finite complex with the homotopy type of n spheres if the rank of G is less than or equal to n. Recently, Adem and Smith have shown that every rank two fini...

متن کامل

Qd(p)-FREE RANK TWO FINITE GROUPS ACT FREELY ON A HOMOTOPY PRODUCT OF TWO SPHERES

A classic result of Swan states that a finite group G acts freely on a finite homotopy sphere if and only if every abelian subgroup of G is cyclic. Following this result, Benson and Carlson conjectured that a finite group G acts freely on a finite complex with the homotopy type of n spheres if the rank of G is less than or equal to n. Recently, Adem and Smith have shown that every rank two fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 1975

ISSN: 0018-2079

DOI: 10.32917/hmj/1206136634