A note on convexity and semicontinuity of fuzzy mappings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on convexity and semicontinuity of fuzzy mappings

By using parameterized representation of fuzzy numbers, criteria for a lower semicontinuous fuzzy mapping defined on a non-empty convex subset of Rn to be a convex fuzzy mapping are obtained. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

A NOTE ON INTUITIONISTIC FUZZY MAPPINGS

In this paper, the concept of intuitionistic fuzzy mapping as a generalization of fuzzy mapping is presented, and its' relationship with intuitionistic fuzzy relations is derived. Moreover, some basicoperations of intuitionistic fuzzy mappings are defined, hence we can conclude that all of intuitionistic fuzzy mappings constitute a soft algebrawith respect to these operations. Afterwards, the A...

متن کامل

a note on intuitionistic fuzzy mappings

in this paper, the concept of intuitionistic fuzzy mapping as a generalization of fuzzy mapping is presented, and its' relationship with intuitionistic fuzzy relations is derived. moreover, some basicoperations of intuitionistic fuzzy mappings are defined, hence we can conclude that all of intuitionistic fuzzy mappings constitute a soft algebrawith respect to these operations. afterwards, the a...

متن کامل

A Note on Fixed Fuzzy Points for Fuzzy Mappings

After the introduction of the concept of a fuzzy set by Zadeh, several researches were conducted on the generalizations of the concept of a fuzzy set. The idea of intuitionistic fuzzy set is due to Atanassov [1], [2], [3] and recently Çoker [4] has defined the concept of intuitionistic fuzzy topological space which generalizes the concept of fuzzy topological space introduced by Chang [5]. Heil...

متن کامل

A note on fuzzy contractive mappings in fuzzy metric spaces

Definition 1.1 (see [1]). A triple (X ,M,∗), where X is an arbitrary set, ∗ is a continuous t-norm, andM is a fuzzy set on X2× (0,∞), is said to be a fuzzy metric space (in the sense of George and Veeramani) if the following conditions are satisfied for all x, y ∈ X and s, t > 0: (GV-1) M(x, y, t) > 0; (GV-2) M(x, y, t)= 1 if and only if x = y; (GV-3) M(x, y, t)=M(y,x, t); (GV-4) M(x, y,·) is c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2008

ISSN: 0893-9659

DOI: 10.1016/j.aml.2007.09.003