A note on Chern coefficients and Cohen–Macaulay rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Chern Coefficients of Local Rings

The Chern numbers of the title are the first coefficients (after the multiplicities) of the Hilbert functions of various filtrations of ideals of a local ring (R, m). For a Noetherian (good) filtration A of m-primary ideals, the positivity and bounds for e1(A) are well-studied if R is Cohen-Macaulay, or more broadly, if R is a Buchsbaum ring or mild generalizations thereof. For arbitrary geomet...

متن کامل

The Signature of the Chern Coefficients of Local Rings

This paper considers the following conjecture: If R is an unmixed, equidimensional local ring that is a homomorphic image of a Cohen-Macaulay local ring, then for any ideal J generated by a system of parameters, the Chern coefficient e1(J) < 0 is equivalent to R being non Cohen-Macaulay. The conjecture is established if R is a homomorphic image of a Gorenstein ring, and for all universally cate...

متن کامل

A Note on Noncommutative Chern-Simons Theories

The three dimensional Chern-Simons theory on Rθ ×R is studied. Considering the gauge transformations under the group elements which are going to one at infinity, we show that under arbitrary (finite) gauge transformations action changes with an integer multiple of 2π if, the level of noncommutative Chern-Simons is quantized. We also briefly discuss the case of the noncommutative torus and some ...

متن کامل

A note on Noncommutative Chern-Simons Theories

The three dimensional Chern-Simons theory on the noncommutative plane is considered. We show that the action is invariant under arbitrary (finite) gauge transformations and hence, we can relax the level quantization condition which we have in the usual (commutative) Chern-Simons theories. We also briefly discuss the case of the noncommutative torus.

متن کامل

A Note On The Chern-Simons And Kodama Wavefunctions

Yang-Mills theory in four dimensions formally admits an exact Chern-Simons wavefunction. It is an eigenfunction of the quantum Hamiltonian with zero energy. It is known to be unphysical for a variety of reasons, but it is still interesting to understand what it describes. We show that in expanding around this state, positive helicity gauge bosons have positive energy and negative helicity ones ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 2020

ISSN: 0004-2080,1871-2487

DOI: 10.4310/arkiv.2020.v58.n1.a12