A note on Chen's basic equality for submanifolds in a Sasakian space form

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Chen’s Basic Equality for Submanifolds in a Sasakian Space Form

It is proved that a Riemannian manifold M isometrically immersed in a Sasakian space form˜M(c) of constant ϕ-sectional curvature c < 1, with the structure vector field ξ tangent to M, satisfies Chen's basic equality if and only if it is a 3-dimensional minimal invariant submanifold. 1. Introduction. Let˜M be an m-dimensional almost contact manifold endowed with an almost contact structure (ϕ,ξ,...

متن کامل

RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM

Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...

متن کامل

Hypersurfaces of a Sasakian space form with recurrent shape operator

Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.

متن کامل

Contact CR Submanifolds of maximal Contact CR dimension of Sasakian Space Form

In this paper, we investigate contact CR submanifolds of contact CR dimension in Sasakian space form and introduce the general structure of these submanifolds and then studying structures of this submanifols with the condition  h(FX,Y)+h(X,FY)=g(FX,Y)zeta, for the normal vector field zeta, which is nonzero, and we classify these submanifolds.

متن کامل

A Note on Doubly Warped Product Contact CR-Submanifolds in trans-Sasakian Manifolds

Warped product CR-submanifolds in Kählerian manifolds were intensively studied only since 2001 after the impulse given by B.Y. Chen in [2], [3]. Immediately after, another line of research, similar to that concerning Sasakian geometry as the odd dimensional version of Kählerian geometry, was developed, namely warped product contact CR-submanifolds in Sasakian manifolds (cf. [6], [7]). In this n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2003

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171203201137