A note on bi-contractive projections on spaces of vector valued continuous functions
نویسندگان
چکیده
منابع مشابه
Nuclear Operators on Spaces of Continuous Vector-Valued Functions
Abstract Let Ω be a compact Hausdorff space, let E be a Banach space, and let C(Ω, E) stand for the Banach space of all E-valued continuous functions on Ω under supnorm. In this paper we study when nuclear operators on C(Ω, E) spaces can be completely characterized in terms of properties of their representing vector measures. We also show that if F is a Banach space and if T : C(Ω, E) → F is a ...
متن کامل0 Integral Operators on Spaces of Continuous Vector - valued functions
Let X be a compact Hausdorff space, let E be a Banach space, and let C(X,E) stand for the Banach space of E-valued continuous functions on X under the uniform norm. In this paper we characterize Integral operators (in the sense of Grothendieck) on C(X,E) spaces in term of their representing vector measures. This is then used to give some applications to Nuclear operators on C(X,E) spaces. AMS(M...
متن کاملContractive Projections on Banach Spaces
Increasing sequences of contractive projections on a reflexive LP space share an unconditionality property similar to that exhibited sequences of self-adjoint projections on a Hilbert space. A slight variation of this property is shown to be precisely the correct condition on a reflexive Banach space to ensure that every operator with a contractive AC-functional calculus is scalar-type spectraL
متن کاملStability of persistence spaces of vector-valued continuous functions
Multidimensional persistence modules do not admit a concise representation analogous to that provided by persistence diagrams for real-valued functions. However, there is no obstruction for multidimensional persistent Betti numbers to admit one. Therefore, it is reasonable to look for a generalization of persistence diagrams concerning those properties that are related only to persistent Betti ...
متن کاملIsomorphisms between Spaces of Vector-valued Continuous Functions
A theorem due to Milutin [12] (see also [13]) asserts that for any two uncountable compact metric spaces Qt and Q2> t n e spaces of continuous real-valued functions C ^ ) and C(Q2) are linearly isomorphic. It immediately follows from consideration of tensor products that if X is any Banach space then QQ^X) and C(Q2;X) are isomorphic. The purpose of this paper is to show that this conclusion is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Concrete Operators
سال: 2018
ISSN: 2299-3282
DOI: 10.1515/conop-2018-0005