A note on asymptotically linear elliptic problems in RN
نویسندگان
چکیده
منابع مشابه
Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations
In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملEigenvalue Problems for a Quasilinear Elliptic Equation on Rn
where λ ∈ R. Next, we state the general hypotheses which will be assumed throughout the paper. (E) Assume that N , p satisfy the following relation N > p > 1. (G) g is a smooth function, at least C1,α(RN ) for some α∈ (0,1), such that g ∈ L∞(RN ) and g(x) > 0, on Ω+, with measure of Ω+, |Ω+| > 0. Also there exist R0 sufficiently large and k > 0 such that g(x) <−k, for all |x| > R0. Generally, p...
متن کاملMultiple Solutions for Asymptotically Linear Resonant Elliptic Problems
In this paper we establish the existence of multiple solutions for the semilinear elliptic problem (1.1) −∆u = g(x, u) in Ω, u = 0 on ∂Ω, where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, a function g: Ω×R→ R is of class C1 such that g(x, 0) = 0 and which is asymptotically linear at infinity. We considered both cases, resonant and nonresonant. We use critical groups to distinguish the c...
متن کاملOn an Asymptotically Linear Elliptic Dirichlet Problem
where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω. The conditions imposed on f (x, t) are as follows: (f1) f ∈ C(Ω×R,R); f (x,0) = 0, for all x ∈Ω. (f2) lim|t|→0( f (x, t)/t) = μ, lim|t|→∞( f (x, t)/t) = uniformly in x ∈Ω. Since we assume (f2), problem (1.1) is called asymptotically linear at both zero and infinity. This kind of problems have captured great interest since the pi...
متن کاملA note on quasilinear elliptic eigenvalue problems
We study an eigenvalue problem by a non-smooth critical point theory. Under general assumptions, we prove the existence of at least one solution as a minimum of a constrained energy functional. We apply some results on critical point theory with symmetry to provide a multiplicity result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2002
ISSN: 0022-247X
DOI: 10.1016/s0022-247x(02)00143-9