A nonparametric kernel-based approach to Hammerstein system identification
نویسندگان
چکیده
منابع مشابه
A kernel-based approach to overparameterized Hammerstein system identification
The object of this paper is the identification of Hammerstein systems, which are dynamic systems consisting of a static nonlinearity and a linear time-invariant dynamic system in cascade. We assume that the nonlinear function can be described as a linear combination of p basis functions. We model the system dynamics by means of an np-dimensional vector. This vector, usually referred to as overp...
متن کاملA kernel-based approach to Hammerstein system identification
In this paper, we propose a novel algorithm for the identification of Hammerstein systems. Adopting a Bayesian approach, we model the impulse response of the unknown linear dynamic system as a realization of a zero-mean Gaussian process. The covariance matrix (or kernel) of this process is given by the recently introduced stable-spline kernel, which encodes information on the stability and regu...
متن کاملA Decoupling Derivative-based Approach for Hammerstein System Identification
This paper proposes a non iterative algorithm for the identification of Hammerstein model, using the sampled output data obtained from the step response, giving a continuoustime model for the linear part and a point-wise estimation of the nonlinear one. Key in the derivation of the results is the algebraic derivative method in the frequency domain yielding exact formula in terms of multiple int...
متن کاملA blind approach to Hammerstein model identification
This paper discusses the Hammerstein model identification using a blind approach. By fast sampling at the output, it is shown that identification of the linear part can be achieved based only on the output measurements that makes the Hammerstein model identification possible without knowing the structure of the nonlinearity and the internal variables.
متن کاملAdaptive Kernel Canonical Correlation Analysis Algorithms for Nonparametric Identification of Wiener and Hammerstein Systems
This paper treats the identification of nonlinear systems that consist of a cascade of a linear channel and a nonlinearity, such as the well-known Wiener and Hammerstein systems. In particular, we follow a supervised identification approach that simultaneously identifies both parts of the nonlinear system. Given the correct restrictions on the identification problem, we show how kernel canonica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2017
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2017.07.055