منابع مشابه
Nonlinear nonlocal diffusion: A fractional porous medium equation
We develop a theory of existence and uniqueness for the following porous medium equation with fractional diffusion, ∂u ∂t + (−∆)σ/2(|u|m−1u) = 0, x ∈ RN , t > 0, u(x, 0) = f(x), x ∈ RN , with data f ∈ L1(RN ) and exponents 0 < σ < 2, m > m∗ = (N − σ)+/N . An L1-contraction semigroup is constructed. Nonnegative solutions are proved to be continuous and strictly positive for all x ∈ RN , t > 0...
متن کاملOn solvability of some boundary value problems for a fractional analogue of the Helmholtz equation
In this paper we study some boundary value problems for fractional analogue of Helmholtz equation in a rectangular and in a half-band. Theorems about existence and uniqueness of a solution of the considered problems are proved by spectral method.
متن کاملSolution of the Three-Dimensional Helmholtz Equation with Nonlocal Boundary Conditions
The Helmholtz equation is solved within a three-dimensional rectangular duct with a sound source at the duct entrance plane, local admittance conditions on the side walls, and a new, nonlocal radiation boundary condition at the duct exit plane. The formulation employs a truncation of an infinite matrix, the generalized modal admittance tensor, that represents the transformation of the modal pre...
متن کاملA Nonlocal Convection-diffusion Equation
In this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J ∗u−u+G ∗ (f(u))− f(u) in R, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equatio...
متن کاملUnified Fractional Kinetic Equation and a Fractional Diffusion Equation
Abstract. In earlier papers Saxena et al. (2002, 2003) derived the solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which extended the work of Haubold and Mathai (2000). The object of the present paper is to investigate the solution of a unified form of fractional kinetic equation in which the free term contains any integrable function f(t),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractional Differential Calculus
سال: 2017
ISSN: 1847-9677
DOI: 10.7153/fdc-2017-07-08