A Noncausal Autoregressive Model with Time-Varying Parameters: An Application to U.S. Inflation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stochastic Volatility in Mean Model with Time- Varying Parameters: An Application to Inflation Modeling

This paper generalizes the popular stochastic volatility in mean model of Koopman and Hol Uspensky (2002) to allow for time-varying parameters in the conditional mean. The estimation of this extension is nontrival since the volatility appears in both the conditional mean and the conditional variance, and its coefficient in the former is time-varying. We develop an efficient Markov chain Monte C...

متن کامل

Noncausal Autoregressive Model in Application to Bitcoin/USD Exchange Rate

This paper introduces a noncausal autoregressive process with Cauchy errors in application to the exchange rates of the Bitcoin electronic currency against the US Dollar. The dynamics of the daily Bitcoin/USD exchange rate series displays episodes of local trends, which can be modelled and interpreted as speculative bubbles. The bubbles may result from the speculative component in the on-line t...

متن کامل

Noncausal Autoregressive Model in Application to Bitcoin/USD Exchange Rates

This paper introduces a noncausal autoregressive process with Cauchy errors in application to the exchange rates of the Bitcoin electronic currency against the US Dollar. The dynamics of the daily Bitcoin/USD exchange rate series displays episodes of local trends, which can be modelled and interpreted as speculative bubbles. The bubbles may result from the speculative component in the on-line t...

متن کامل

An autoregressive model with time-varying coefficients for wind fields

In this paper, an original Markov-switching autoregressive model is proposed to describe the space-time evolution of wind fields. At first, a non-observable process is introduced in order to model the motion of the meteorological structures. Then, conditionally to this process, the evolution of the wind fields is described by using autoregressive models whith time varying coefficients. The prop...

متن کامل

Modeling and Forecasting Iranian Inflation with Time Varying BVAR Models

This paper investigates the forecasting performance of different time-varying BVAR models for Iranian inflation. Forecast accuracy of a BVAR model with Litterman’s prior compared with a time-varying BVAR model (a version introduced by Doan et al., 1984); and a modified time-varying BVAR model, where the autoregressive coefficients are held constant and only the deterministic components are allo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2013

ISSN: 1556-5068

DOI: 10.2139/ssrn.2239790